高一物理知识点总结
(优秀)高一物理知识点总结
总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它可以使我们更有效率,为此我们要做好回顾,写好总结。总结怎么写才是正确的呢?以下是小编为大家收集的高一物理知识点总结,欢迎阅读与收藏。
高一物理知识点总结1一、动能
如果一个物体能对外做功,我们就说这个物体具有能量。物体由于运动而具有的能。 Ek=mv2,其大小与参照系的选取有关。动能是描述物体运动状态的物理量。是相对量。
二、动能定理
做功可以改变物体的能量。所有外力对物体做的总功等于物体动能的增量。 W1+W2+W3+=mvt2―mv02
1、反映了物体动能的.变化与引起变化的原因力对物体所做功之间的因果关系。可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小。所以正功是加号,负功是减号。
2、增量是末动能减初动能。EK0表示动能增加,EK0表示动能减小。
3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理。由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化。在动能定理中。总功指各外力对物体做功的代数和。这里我们所说的外力包括重力、弹力、摩擦力、电场力等。
4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和。
5、力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式。但动能定理是标量式。功和动能都是标量,不能利用矢量法则分解。故动能定理无分量式。在处理一些问题时,可在某一方向应用动能定理。
6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的。但它也适用于变为及物体作曲线运动的情况。即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用。
7、对动能定理中的位移与速度必须相对同一参照物。
高一物理知识点总结2主要知识点
(一)运动的描述
1.内容标准
(1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。
例1了解亚里士多德?关于力与运动的主要观点和研究方法。
例2了解伽利略?的实验研究工作,认识伽利略有关实验的科学思想和方法?。
(2)通过对质点?的认识,了解物理学研究中物理模型的特点,体会物理模型在探索自然规律中的作用。
例3认识在哪些情况下,可以把物体看成质点。
(3)经历匀变速直线运动?的实验研究过程,理解位移、速度和加速度,了解匀变速直线运动的规律,体会实验在发现自然规律中的作用。
例4用打点计时器?、频闪照相或其他实验方法研究匀变速直线运动。
例5通过史实,了解伽利略研究自由落体运动?所用的实验和推理方法。
(4)能用公式和图像描述?匀变速直线运动,体会数学在研究物理问题中的重要性。
2.活动建议
(1)通过实验研究质量相同、大小不同的物体在空气中下落的情况,从中了解空气对落体运动的影响。
(2)通过查找资料等方式,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。
(二)相互作用与运动规律
1.内容标准
(1)通过实验认识滑动摩擦?、静摩擦?的规律,能用动摩擦因数?计算摩擦力。
(2)知道常见的形变,通过实验了解物体的弹性,知道胡克定律?。
例1调查日常生活和生产中所用弹簧的形状及使用目的(如获得弹力或减缓振动等)。
例2制作一个简易弹簧秤?,用胡克定律解释其工作原理。
(3)通过实验,理解力的合成与分解,知道共点力的平衡条件,区分矢量与标量,用力的合成与分解分析日常生活中的问题。
例3研究两个大小相等的共点力在不同夹角时的合力大小。
(4)通过实验,探究加速度与物体质量、物体受力的关系。理解牛顿运动定律?,用牛顿运动定律解释生活中的有关问题。通过实验认识超重和失重现象。
例4通过实验测量加速度、力、质量,分别作出表示加速度与力、加速度与质量的关系的图像,根据图像写出加速度与力、质量的关系式。体会探究过程中所用的科学方法?。
例5根据牛顿第二定律?说明物体所受的重力与质量的关系。
(5)认识单位制在物理学中的重要意义。知道国际单位制中的力学单位。
例6在等式?中给定k= 1,从而定义力的单位。
2.活动建议
(1)调查日常生活和生产中利用静摩擦?的事例。
(2)通过各种活动,例如乘坐电梯、到游乐场乘坐过山车等,了解和体验失重与超重。
(3)根据牛顿第二定律,设计一种能显示加速度大小的装置。
(4)通过听讲座、看录像等活动,了解宇航员的生活,了解在人造卫星上进行微重力?条件下的实验,尝试设计一种在人造卫星或宇宙飞船上进行微重力条件下的实验方案。
高一物理必修一知识点总结
一、运动学的基本概念
1、参考系:运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。通常以地面为参考系。
2、质点:
(1)定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。
(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。
(3)物体可被看做质点的几种情况:
①平动的物体通常可视为质点。
②有转动但相对平动而言可以忽略时,也可以把物体视为质点。
③同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。
【注】质点并不是质量很小的点,要区别于几何学中的“点”。
3、时间和时刻:
时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、位移和路程:
位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;
路程是质点运动轨迹的长度,是标量。
5、速度:
用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。
6、加速度:用量描述速度变化快慢的的物理量,其定义式为
加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。
补充:速度与加速度的关系
1、速度与加速度没有必然的关系,即:
(1)速度大,加速度不一定也大;
(2)加速度大,速度不一定也大;
(3)速度为零,加速度不一定也为零;
(4)加速度为零,速度不一定也为零。
2、当加速度a与速度V方向的关系确定时,则有:
(1)若a与V方向相同时,不管a如何变化,V都增大。
(2)若a与V方向相反时,不管a如何变化,V都减小。
二、匀变速直线运动的规律及其应用
1、定义:在任意相等的时间内速度的变化都相等的直线运动。
2、匀变速直线运动的基本规律,可由下面四个基本关系式表示:
(1)速度公式
(2)位移公式
(3)速度与位移式
(4)平均速度公式
3、几个常用的推论:
(1)任意两个连续相等的时间T内的位移之差为恒量
△x=x2-x1=x3-x2=……=xn-xn-1=aT2
(2)某段时间内时间中点瞬时速度等于这段时间内的平均速度。
(3)一段位移内位移中点的瞬时速度v中与这段位移初速度v0和末速度vt的关系为
。
4、初速度为零的匀加速直线运动的比例式(2)初速度为零的.匀变速直线运动中的几个重要结论:
①1T末,2T末,3T末……瞬时速度之比为:
v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n
②第一个T内,第二个T内,第三个T内……第n个T内的位移之比为:
x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n-1)
③1T内,2T内,3T内……位移之比为:
xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2
④通过连续相等的位移所用时间之比为:
t1∶t2∶t3∶……∶tn=
三、自由落体运动,竖直上抛运动
1、自由落体运动:只在重力作用下由静止开始的下落运动,因为忽略了空气的阻力,所以是一种理想的运动,是初速度为零、加速度为g的匀加速直线运动。
2、自由落体运动规律:
①速度公式:
②位移公式:
③速度―位移公式:
④下落到地面所需时间:
3、竖直上抛运动:
可以看作是初速度为v0,加速度方向与v0方向相反,大小等于的g的匀减速直线运动,可以把它分为向上和向下两个过程来处理。
(1)竖直上抛运动规律
①速度公式:
②位移公式:
③速度―位移公式:
两个推论:
上升到最高点所用时间:
上升的最大高度:
(2)竖直上抛运动的对称性
如下图,物体以初速度v0竖直上抛,A、B为途中的任意两点,C为最高点,则:
(1)时间对称性
物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA。
(2)速度对称性
物体上升过程经过A点的速度与下降过程经过A点的速度大小相等。
【注】在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解。
四、运动的图象,运动的相遇和追及问题
1、图象:
(1)x―t图象
①物理意义:反映了做直线运动的物体的位移随时间变化的规律。
②表示物体处于静止状态
③图线斜率的意义:
图线上某点切线的斜率的大小表示物体速度的大小;
图线上某点切线的斜率的正负表示物体方向。
④两种特殊的x-t图象
匀速直线运动的x-t图象是一条过原点的直线;
若x-t图象是一条平行于时间轴的直线,则表示物体处于静止状态。
(2)v―t图象
①物理意义:反映了做直线运动的物体的速度随时间变化的规律。
②图线斜率的意义:
a.图线上某点切线的斜率的大小表示物体运动的加速度的大小
b.图线上某点切线的斜率的正负表示加速度的方向
③图象与坐标轴围成的“面积”的意义:
a.图象与坐标轴围成的面积的数值表示相应时间内的位移的大小。
b.若此面积在时间轴的上方,表示这段时间内的位移方向为正方向;若此面积在时间轴的下方,表示这段时间内的位移方向为负方向。
③常见的两种图象形式:
a.匀速直线运动的v-t图象是与横轴平行的直线
b.匀变速直线运动的v-t图象是一条倾斜的直线
2、相遇和追及问题:
这类问题的关键是两物体在运动过程中,速度关系和位移关系,要注意寻找问题中隐含的临界条件,通常有两种情况:
(1)物体A追上物体B:开始时,两个物体相距x0,则A追上B时必有,且。
(2)物体A追赶物体B:开始时,两个物体相距x0,要使A与B不相撞,则有
易错现象:
1、混淆x―t图象和v-t图象,不能区分它们的物理意义
2、不能正确计算图线的斜率、面积
3、在处理汽车刹车、飞机降落等实际问题时注意,汽车、飞机停止后不会后退
五、力/重力/弹力/摩擦力
1、力:
力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。
按照力命名的依据不同,可以把力分为:
①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)
②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。
力的作用效果:
①形变;
②改变运动状态.
2、重力:
由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定。
注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。
3、弹力:
(1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。
(2)条件:①接触;②形变。但物体的形变不能超过弹性限度。
(3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)
(4)大小:
①弹簧的弹力大小由F=kx计算
②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定
4、摩擦力:
(1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可
(2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反,但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。
(3)摩擦力的大小:
①滑动摩擦力:
说明:
a. FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
b.为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力FN无关。
②静摩擦:由物体的平衡条件或牛顿第二定律求解,与正压力无关。
大小范围0
静摩擦力的具体数值可用以下方法来计算:一是根据平衡条件,二是根据牛顿第二定律求出合力,然后通过受力分析确定。
(4)注意事项:
a.摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。
b.摩擦力可以作正功,也可以作负功,还可以不作功。
c.摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
d.静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
易错现象:
1.不会确定系统的重心位置
2.没有掌握弹力、摩擦力有无的判定方法
3.静摩擦力方向的确定错误
六、力的合成和分解
1、标量和矢量:
(1)将物理量区分为矢量和标量体现了用分类方法研究物理问题。
(2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。
(3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等。
2、力的合成与分解:
(1)合力与分力
(2)共点力的合成:
1、共点力
几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。
2、力的合成方法
求几个已知力的合力叫做力的合成。
3、平行四边形定则:
两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。
求、的合力公式:
注意:
(1)力的合成和分解都均遵从平行四边行法则。
(2)两个力的合力范围:
(3)合力可以大于分力、也可以小于分力、也可以等于分力
(4)两个分力成直角时,用勾股定理或三角函数。
注意事项:
(1)力的合成与分解,体现了用等效的方法研究物理问题
(2)合成与分解是为了研究问题的方便而引入的一种方法,用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力,而不能同时考虑合力
(3)共点的两个力合力的大小范围是:|F1-F2|≤F合≤Fl+F2
(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零
(5)力的分解时要认准力作用在物体上产生的实际效果,按实际效果来分解
(6)力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力)
易错现象:
1.对含静摩擦力的合成问题没有掌握其可变特性
2.不能按力的作用效果正确分解力
3.没有掌握正交分解的基本方法
七、受力分析
1、受力分析:
要根据力的概念,从物体所处的环境(与多少物体接触,处于什么场中)和运动状态着手,其常规如下:
(1)确定研究对象,并隔离出来;
(2)先画重力,然后弹力、摩擦力,再画电、磁场力;
(3)检查受力图,找出所画力的施力物体,分析结果能否使物体处于题设的运动状态(静止或加速),否则必然是多力或漏力;
(4)合力或分力不能重复列为物体所受的力
2、整体法和隔离体法
(1)整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。
(2)隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑物体对其它物体的作用力。
(3)方法选择
所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简单明了,而不必考虑内力的作用;当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。
3、注意事项:
正确分析物体的受力情况,是解决力学问题的基础和关键,在具体操作时应注意:
(1)弹力和摩擦力都是产生于相互接触的两个物体之间,因此要从接触点处判断弹力和摩擦力是否存在,如果存在,则根据弹力和摩擦力的方向,画好这两个力
(2)画受力图时要逐一检查各个力,找不到施力物体的力一定是无中生有的同时应只画物体的受力,不能把对象对其它物体的施力也画进去
易错现象:
1.不能正确判定弹力和摩擦力的有无;
2.不能灵活选取研究对象;
3.受力分析时受力与施力分不清。
八、共点力作用下物体的平衡
1、物体的平衡:
物体的平衡有两种情况:一是质点静止或做匀速直线运动;二是物体不转动或匀速转动(此时的物体不能看作质点)
2、共点力作用下物体的平衡:
①平衡状态:静止或匀速直线运动状态,物体的加速度为零
②平衡条件:合力为零,亦即F合=0或∑Fx=0,∑Fy=0
a、二力平衡:这两个共点力必然大小相等,方向相反,作用在同一条直线上。
b、三力平衡:这三个共点力必然在同一平面内,且其中任何两个力的合力与第三个力大小相等,方向相反,作用在同一条直线上,即任何两个力的合力必与第三个力平衡
c、若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解,必有:
F合x= F1x+ F2x + ………+ Fnx =0
F合y= F1y+ F2y + ………+ Fny =0 (按接触面分解或按运动方向分解)
③平衡条件的推论:
当物体处于平衡状态时,它所受的某一个力与所受的其它力的合力等值反向;
当三个共点力作用在物体(质点)上处于平衡时,三个力的矢量组成一封闭的三角形按同一环绕方向。
3、平衡物体的临界问题:
当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)时的转折状态叫临界状态。可理解成“恰好出现”或“恰好不出现”。
临界问题的分析方法:
极限分析法:通过恰当地选取某个物理量推向极端(“极大”、“极小”、“极左”、“极右”)从而把比较隐蔽的临界现象(“各种可能性”)暴露出来,便于解答。
易错现象:
(1)不能灵活应用整体法和隔离法;
(2)不注意动态平衡中边界条件的约束;
(3)不能正确制定临界条件。
九、牛顿运动三定律
1、牛顿第一定律:
(1)内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
(2)理解:
①它说明了一切物体都有惯性,惯性是物体的固有性质.质量是物体惯性大小的量度(惯性与物体的速度大小、受力大小、运动状态无关)
②它揭示了力与运动的关系:力是改变物体运动状态(产生加速度)的原因,而不是维持运动的原因
③它是通过理想实验得出的,它不能由实际的实验来验证
2、牛顿第二定律:
内容:物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m成反比,加速度的方向跟合外力的方向相同
公式:
理解:
①瞬时性:力和加速度同时产生、同时变化、同时消失
②矢量性:加速度的方向与合外力的方向相同
③同体性:合外力、质量和加速度是针对同一物体(同一研究对象)
④同一性:合外力、质量和加速度的单位统一用SI制主单位⑤相对性:加速度是相对于惯性参照系的
3、牛顿第三定律:
(1)内容:
两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上
(2)理解:
①作用力和反作用力的同时性。它们是同时产生,同时变化,同时消失,不是先有作用力后有反作用力。
②作用力和反作用力的性质相同,即作用力和反作用力是属同种性质的力。
③作用力和反作用力的相互依赖性:它们是相互依存,互以对方作为自己存在的前提。
④作用力和反作用力的不可叠加性。作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两力的作用效果不能相互抵消。
4、牛顿运动定律的适用范围:
对于宏观物体低速的运动(运动速度远小于光速的运动),牛顿运动定律是成立的,但对于物体的高速运动(运动速度接近光速)和微观粒子的运动,牛顿运动定律就不适用了,要用相对论观点、量子力学理论处理。
易错现象:
(1)错误地认为惯性与物体的速度有关,速度越大惯性越大,速度越小惯性越小;另外一种错误是认为惯性和力是同一个概念。
(2)不能正确地运用力和运动的关系分析物体的运动过程中速度和加速度等参量的变化。
(3)不能把物体运动的加速度与其受到的合外力的瞬时对应关系正确运用到轻绳、轻弹簧和轻杆等理想化模型上。
高一物理知识点总结3曲线运动、万有引力
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。
高一物理知识点2
动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F{负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的`平衡F合=0,推广{正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
高一物理知识点总结4一、物体受力分析的基本思路和方法
物体的受力情况不同,物体可处于不同的运动状态,要研究物体的运动,必须分析物体的受力情况,正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。
分析物体的受力情况,主要是根据力的概念,从物体的运动状态及其与周围物体的接触情况来考虑。具体的方法是:
1.确定研究对象,找出所有施力物体
确定所研究的物体,找出周围对它施力的物体,得出研究对象的受力情况。
(1)如果所研究的物体为A,与A接触的物体有B、C、D……就应该找出“B对A”、“C对A”、“D对A”、的作用力等,不能把“A对B”、“A对C”等的作用力也作为A的受力;
(2)不能把作用在其它物体上的力,错误的认为可通过“力的传递”而作用在研究的对象上;
(3)物体受到的每个力的作用,都要找到施力物体;
(4)分析出物体的.受力情况后,要检查能否使研究对象处于题目所给出的运动状态(静止或加速等),否则会发生多力或漏力现象。
2.按步骤分析物体受力
为了防止出现多力或漏力现象,分析物体受力情况通常按如下步骤进行:
(1)先分析物体受重力。
(2)其研究对象与周围物体有接触,则分析弹力或摩擦力,依次对每个接触面(点)分析,若有挤压则有弹力,若还有相对运动或相对运动趋势,则有摩擦力。
(3)其它外力,如是否有牵引力、电场力、磁场力等。
3.画出物体力的示意图
(1)在作物体受力示意图时,物体所受的某个力和这个力的分力,不能重复的列为物体的受力,力的合成与分解过程是合力与分力的等效替代过程,合力和分力不能同时认为是物体所受的力。
(2)作物体是力的示意图时,要用字母代号标出物体所受的每一个力。
二、力的正交分解法
在处理力的合成和分解的复杂问题上的一种简便的方法:正交分解法。
正交分解法:是把力沿着两个选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量的运算。
力的正交分解法步骤如下:
(1)正确选定直角坐标系。通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际情况来确定,原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴分解的力尽可能少。
(2)分别将各个力投影到坐标轴上。分别求x轴和y轴上各力的投影合力Fx和Fy,其中:
Fx=F1x+F2x+F3x+…… ;Fy=F1y+F2y+F3y+……
注意:如果F合=0,可推出Fx=0,Fy=0,这是处理多个作用下物体平衡物体的好办法,以后会常常用到。第2章的..高中物理‘加速度’,一般都是指‘匀加速度’,即,加速度是一个常量
1、加速度a与速度V的关系符合下式:V==at,t为时间变量,我们有a==V/t
表明,加速度a,就是速度V在单位时间内的平均变化率。
2、V==at是一个直线方程,它相当于数学上的y=kx(V相当于y,t相当于x,a相当于k)
数学知识指出,k是特定直线y=kx的斜率,直线斜率有如下性质:
(1)不同直线(彼此不平行)的斜率,数值不等
(2)同一直线上斜率的数值,处处相等(与y和x的数值无关)
(3)直线斜率的数值,可以通过y和x的数值来求算:
k==y/x
(4)虽然k==y/x,但是,y==0,x==0,k不为零。
仿此,(1)不同运动的加速度,数值不等
(2)同一运动的加速度数值,处处相等(与V和t的数值无关)
(3)运动的加速度数值,可以通过V和t的数值来求算:
==V/t
(4)虽然a==V/t,但是V==0(由静止开始云动),t==0,但a不为零。
.变加速运动中的物体加速度在减小而速度却在增大,以及加速度不为零的物体速度大小却可能不变.(这两句怎么理解啊??举几个例子?
变加速运动中加速度减小速度当然是增大了,只有加速度的方向与速度方向一致那么速度就是增加的,与加速度大小没有关系,例如从一个半圆形轨道上滑下的一个木块,它沿水平方向的加速度是减小的,但速度是增加的。
加速度在与速度方向在同一条直线上时才改变速度的大小,有加速度那么速度就得改变,如果想让速度大小不变,那么就得让它的方向改变,如匀速圆周运动,加速度的大小不变且不为0,速度方向不断改变但大小不变。
刹车方面应用题:汽车以15米每秒的速度行驶,司机发现前方有危险,在0.8s之后才能作出反应,马上制动,这个时间称为反应时间.若汽车刹车时能产生最大加速度为5米每二次方秒,从汽车司机发现前方有危险马上制动刹车到汽车完全停下来,汽车所通过的距离叫刹车距离.问该汽车的刹车距离为多少?(最好附些过程,谢谢)
15米/秒加速度是5米/二次方秒那么停止需要3秒钟
3秒通过的路程是s=15-3-1/2-5-3^2=22.5
反应时间是0.8秒s=0.8-15=12
总的距离就是22.5+12=34.5
原先“直线运动”是放在“力”之后的,在力这一章先讲矢量及其算法,然后是利用矢量运算法则学习力的计算。现在倒过来了。建议你还是先学一下这这章内容。
要理解“加速度”,首先要理解“位移”和“速度”概念,位移就是物体运动前后位置的变化,即由开始位置指向结束位置的矢量。
速度就是物体位移(物体位置的变化量)与物体运动所用时间的比值,如果物体不是匀速运动(叫变速运动),速度就又有瞬时速度和平均速度之分,平均速度就是作变速运动的物体在某段时间内(或某段位移上),位移与时间的比值;瞬时速度就是物体在某一点或某一时刻的速度。
加速度就是物体速度的变化量与物体速度变化所用时间的比值,如果物体不是匀加速运动(叫变加速运动),加速度就又有瞬时加速度和平均加速度之分,平均加速度就是作变速运动的物体在某段时间内(或某段位移上),速度变化量与时间的比值;瞬时加速度就是物体在某一点或某一时刻的加速度。
高一物理知识点总结51.物体做功的条件:①力②在力的方向上发生位移
2.公式:W=FLcosα F―力L―位移α―力与位移的夹角
3.单位:焦耳J 1J=1N・m标量
4.正功与负功①α=π/2不做功②α
5.当一个物体在几个力的.共同作用下发生一段位移时,这几个力对物体所做的总功,等于各个力分别对物体所做功的代数和。
高一物理知识点总结6自由落体
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt^2/2(从Vo位置向下计算)4.推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8m/s^2≈10m/s^2重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3)竖直上抛
1.位移S=Vot-gt^2/22.末速度Vt=Vo-gt(g=9.8≈10m/s2)
3.有用推论Vt^2CVo^2=-2gS4.上升高度Hm=Vo^2/2g(抛出点算起)
5.往返时间t=2Vo/g(从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高一物理知识点总结7运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。
第一章运动的描述
专题一:描述物体运动的几个基本本概念
◎知识梳理
1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。
2.参考系:被假定为不动的物体系。
对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。
3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。 ’
物体可视为质点主要是以下三种情形:
(1)物体平动时;
(2)物体的位移远远大于物体本身的限度时;
(3)只研究物体的平动,而不考虑其转动效果时。
4.时刻和时间
(1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。
(2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。
5.位移和路程
(1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。
(2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。
(3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。
6.速度
(1).速度:是描述物体运动方向和快慢的物理量。
(2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。
(3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。
②平均速度的大小与物体不同的运动阶段有关。
③v=s是平均速度的定义式,适用于所有的运动,t
(4).平均速率:物体在某段时间的路程与所用时间的比值,是粗略描述运动快慢的.。 ①平均速率是标量。
②v=s是平均速率的定义式,适用于所有的运动。 t
③平均速度和平均速率往往是不等的,只有物体做无往复的直线运动时二者才相等。 ◎例题评析
【例1】物体沿直线向同一方向运动,通过两个连续相等的位移的平均速度分别为v1=10m/s和v2=15m/s,则物体在这整个运动过程中的平均速度是多少?
【分析与解答】设每段位移为s,由平均速度的定义有
v=2s?t1?t22vv2s?12=12m/s s/v1?s/v2v1?v2
[点评]一个过程的平均速度与它在这个过程中各阶段的平均速度没有直接的关系,因此要根据平均速度的定义计算,不能用公式v=(v0+vt)/2,因它仅适用于匀变速直线运动。
【例2】.一质点沿直线ox方向作加速运动,它离开o点的距离x随时间变化的关系为
32x=5+2t(m),它的速度随时间变化的关系为v=6t(m/s),求该质点在t=0到t=2s间的平均速度大小和t=2s到t=3s间的平均速度的大小。
【分析与解答】当t=0时,对应x0=5m,当t=2s时,对应x2=21m,当t=3s时,对应x3=59m,则:t=0到t=2s间的平均速度大小为v1?x2?x0=8m/s 2
x3?x2=38m/s 1
[点评]只有区分了求的是平均速度还是瞬时速度,才能正确地选择公式。
【例3】一架飞机水平匀速地在某同学头顶飞过,当他听到飞机的发动机声音从头顶正上方
0传来时,发现飞机在他前上方与地面成60角的方向上,据此可估算出此飞机的速度约为声
速的多少倍? t=2s到t=3s间的平均速度大小为v2?
【分析与解答】设飞机在头顶上方时距人h,则人听到声音时飞机走的距离为:3h/3对声音:h=v声t对飞机:h/3=v飞t
解得:v飞=v声/3≈0.58v声
[点评]此类题和实际相联系,要画图才能清晰地展示物体的运动过程,挖掘出题中的隐含条件,如本题中声音从正上方传到人处的这段时间内飞机前进的距离,就能很容易地列出方程求解。
高一物理知识点总结81、电场线:用来形象描述电场的假想曲线,是由法拉第引入的。
理解:①、起始于正电荷(无穷远处),终止于负电荷(无穷远处),不是闭合曲线,不相交。
②、电场线上一点的切线方向为该点场强方向。
③、电场线的疏密程度反映了场强的大小。
④、匀强电场的电场线是平行等距的直线。
⑤、沿电场线方向电势逐点降低,是电势最低最快的方向。
⑦、电场线并非电荷运动的轨迹。
2、等势面:电势相等的点构成的面有以下特征;
①在同一等势面上移动电荷电场力不做功。
②等势面与电场力垂直。
③电场中任何两个等势面不相交。
④电场线由高等势面指向低等势面。
⑤规定:相邻等势面间的电势差相差,所以等势面的疏密反映了场强的大小(匀强点电荷电场等势面的特点)
⑥几种等势面的性质
A、等量同种电荷连线和中线上
连线上:中点电势最小
中线上:由中点到无穷远电势逐渐减小,无穷远电势为零。
B、等量异种电荷连线上和中线上
连线上:由正电荷到负电荷电势逐渐减小。
中线上:各点电势相等且都等于零。
3、电场力做功与电势能的关系:
①、通过电场力做功说明:电场力做正功,电势能减小。
电场力做负功,电势能增大。
②、正电荷:顺着电场线移动时,电势能减小。
逆着电场线移动时,电势能增加。
负电荷:顺着电场线移动时,电势能增加。
逆着电场线移动时,电势能减小。
③、求电荷在电场中A、B两点具有的电势能高低
将电荷由A点移到B点根据电场力做功情况判断,电场力做正功,电势能减小,电荷在A点电势能大于在B点的电势能,反之电场力做负功,电势能增加,电荷在B点的电势能小于在B点的'电势能
④、在正电荷产生的电场中正电荷在任意一点具有的电势能都为正,负电荷在任一点具有的电势能都为负。
在负电荷产生的电场中正电荷在任意一点具有的电势能都为负,负电荷在任意一点具有的电势能都为正。
高一物理知识点总结91)匀变速直线运动
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a
8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=02.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs4.上升高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g(从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动
(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg(方向竖直向下,g=9.8m/
s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为静摩擦力)
5.万有引力F=Gm1m2/r2(G=6.67×10-11Nm2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2(k=9.0×109Nm2/C2,方向在它们的连线上)
7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F{负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft{I:冲量(Ns),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvtCmvo{Δp:动量变化Δp=mvtCmvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’也可以是m1v1+m2v2=m1v1+m2v2
6.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1=(m1-m2)v1/(m1+m2)v2=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α
力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=
1.60×10-19J;_(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的.方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场