设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.(1)求数列{an}的公比;(2)证明:对任意k∈N*,Sk+2,Sk,Sk+

share

    题型: 解答题 难度: 一般
    设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.
    (1)求数列{an}的公比;
    (2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
    答案
    (1)q=-2(2)见解析
    解析
    (1)设数列{an}的公比为q(q≠0,q≠1),
    由a5,a3,a4成等差数列,得2a3=a5+a4,
    即2a1q2=a1q4+a1q3,
    由a1≠0,q≠0得q2+q-2=0,解得q=-2或1(舍去),所以q=-2.
    (2)法一 对任意k∈N*,
    Sk+2+Sk+1-2Sk=(Sk+2-Sk)+(Sk+1-Sk)
    =ak+1+ak+2+ak+1
    =2ak+1+ak+1・(-2)=0,
    所以,对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
    法二:对任意k∈N*,2Sk=,
    Sk+2+Sk+1=+=,
    2Sk-(Sk+2+Sk+1)=-
    =?[2(1-qk)-(2-qk+2-qk+1)]=?(q2+q-2)=0,
    因此,对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
    
share
评论 (0)